The scrambling index set of primitive minimally strong digraphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well primitive digraphs

A primitive digraph D is said to be well primitive if the local exponents of D are all equal. In this paper we consider well primitive digraphs of two special types: digraphs that contain loops, and symmetric digraphs with shortest odd cycle of length r. We show that the upper bound of the exponent of the well primitive digraph is n− 1 in both these classes of digraphs, and we characterize the ...

متن کامل

Local Exponents of Primitive Digraphs

A digraph G = (V; E) is primitive if, for some positive integer k, there is a u ! v walk of length k for every pair u; v of vertices of V. The minimum such k is called the exponent of G, denoted exp(G). The local exponent of G at a vertex u 2 V , denoted exp G (u), is the least integer k such that there is a u ! v walk of length k for each v 2 V. Let V = f1; 2; ; ng. Following Brualdi and Liu, ...

متن کامل

Minimal strong digraphs

We introduce adequate concepts of expansion of a digraph to obtain a sequential construction of minimal strong digraphs. We obtain a characterization of the class of minimal strong digraphs whose expansion preserves the property of minimality. We prove that every minimal strong digraph of order n > 2 is the expansion of a minimal strong digraph of order n — \ and we give sequentially generative...

متن کامل

Generalized Exponents of Primitive Symmetric Digraphs

A strongly connected digraph D of order n is primitive (aperiodic) provided the greatest common divisor of its directed cycle lengths equals 1. For such a digraph there is a minimum integer t, called the exponent of D, such that given any ordered pair of vertices x and y there is a directed walk from x to y of length t. The exponent of D is the largest of n ‘generalized exponents’ that may be a...

متن کامل

ON k-STRONG DISTANCE IN STRONG DIGRAPHS

For a nonempty set S of vertices in a strong digraph D, the strong distance d(S) is the minimum size of a strong subdigraph of D containing the vertices of S. If S contains k vertices, then d(S) is referred to as the k-strong distance of S. For an integer k > 2 and a vertex v of a strong digraph D, the k-strong eccentricity sek(v) of v is the maximum k-strong distance d(S) among all sets S of k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2016

ISSN: 0024-3795

DOI: 10.1016/j.laa.2016.03.008